skip to main content


Search for: All records

Creators/Authors contains: "Antami, Kameel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Despite the groundbreaking advancements in the synthesis of inorganic lead halide perovskite (LHP) nanocrystals (NCs), stimulated from their intriguing size‐, composition‐, and morphology‐dependent optical and optoelectronic properties, their formation mechanism through the hot‐injection (HI) synthetic route is not well‐understood. In this work, for the first time, in‐flow HI synthesis of cesium lead iodide (CsPbI3) NCs is introduced and a comprehensive understanding of the interdependent competing reaction parameters controlling the NC morphology (nanocube vs nanoplatelet) and properties is provided. Utilizing the developed flow synthesis strategy, a change in the CsPbI3NC formation mechanism at temperatures higher than 150 °C, resulting in different CsPbI3morphologies is revealed. Through comparison of the flow‐ versus flask‐based synthesis, deficiencies of batch reactors in reproducible and scalable synthesis of CsPbI3NCs with fast formation kinetics are demonstrated. The developed modular flow chemistry route provides a new frontier for high‐temperature studies of solution‐processed LHP NCs and enables their consistent and reliable continuous nanomanufacturing for next‐generation energy technologies.

     
    more » « less
  2.  
    more » « less